```
WHITTAKER, E. J. W. (1956a). Acta Cryst. 9, 855.
WHITTAKER, E. J. W. (1956b). Acta Cryst. 9, 862.
WHITTAKER, E. J. W. (1956c). Acta Cryst. 9, 865.
ZUSSMAN, J. (1954). Miner. Mag. 30, 498.
```

Acta Cryst. (1957). 10, 156

The Crystal Structure of P₄S₅

By S. VAN HOUTEN AND E. H. WIEBENGA

Laboratorium voor Anorganische en Fysische Chemie der Rijksuniversiteit, Groningen, Netherlands

(Received 14 September 1956)

The crystal structure of P_4S_5 has been determined by X-ray diffraction. Space group $P2_1$, 2 molecules per unit cell. Approximate coordinates were found from a three-dimensional Patterson synthesis. The coordinates were refined by means of successive Fourier syntheses of the three projections. The crystal consists of molecules of P_4S_5 , which have an unexpected structure. The P-S distances vary from 2.08 to 2.19 Å, the average P-P distance is 2.21 Å and the P=S distance is 1.94 Å.

Introduction

Phosphorus and sulphur form the compounds P_4S_3 , P_4S_5 , P_4S_7 and P_4S_{10} (Stock, 1910; Treadwell & Beeli, 1935; Pernert & Brown, 1949). The structures of these compounds have been investigated in our laboratory during recent years (Vos & Wiebenga, 1955; van Houten, Vos and Wiegers, 1955); that of P_4S_3 has also been determined independently by Leung, Waser & Roberts (1955). The structure determination of P_4S_5 , being the last compound investigated, is described in the present paper.

Experimental

Materials

 P_4S_5 is formed when a solution of P_4S_3 , sulphur and some iodine in dry carbon disulphide is exposed to diffuse daylight for three days (Boulouch, 1904). The reaction has to take place in a closed vessel in an atmosphere of carbon dioxide to prevent the oxidation of P_4S_3 . The substance can be purified by recrystallization from carbon disulfide. The X-ray photographs were made from crystals having a diameter of approximately 0.1 mm. perpendicular to the axis about which the photographs were taken. The crystals were mounted in capillaries of borosilicate glass.

Space group and lattice constants

Weissenberg photographs showed the crystals to be monoclinic. The systematic absences are those required by the space groups $P2_1$ or $P2_1/m$. The pyroelectricity of the crystals indicated the space group $P2_1$, which was confirmed by the result of the structure determination.

The lattice constants were measured on Weissenberg and oscillation photographs about the three

axes. With $\lambda(\operatorname{Cu} K\alpha) = 1.5418$ Å the following values for the lattice constants were obtained:

The inaccuracies listed are estimated standard deviations. With two molecules per unit cell the density was calculated to be 2·15 g.cm.⁻³; the experimental value is 2·17 g.cm.⁻³ at 25° C. (Treadwell & Beeli, 1935).

Structure factors

The intensities of 738 independent reflexions hkl were estimated visually on equi-inclination Weissenberg photographs about the a axis, using Ni-filtered Cu radiation. Use was made of the multiple-film technique. The crystals were twins with common b^* and c^* axes; therefore two sets of reflexions were available on all but the zero layer lines. A correction for absorption was applied. The intensity data observed on different layer lines were related by h0l and hk0 reflexions from integrated equiinclination Weissenberg photographs (Wiebenga & Smits, 1950) about the b and c axes respectively. In the course of the structure determination the scale factors thus obtained were somewhat adjusted, using the calculated structure factors.

Determination of the structure

Interpretation of the Patterson synthesis

After some unsuccessful attempts to solve the structure by means of inequalities, a three-dimensional Patterson synthesis was computed. Peaks around the origin at distances of about 2 Å give the vectors between bonded atoms. These peaks were all very low,

suggesting that there are no parallel bonds in the molecule.

The location of some of these peaks, combined with those of other general peaks in the three-dimensional Patterson synthesis, gave an indication of the relative positions of four atoms, lying at the vertices of a trigonal pyramid. The location of this pyramid in the cell could be found by making use of the information obtained from the Harker section. An atom at the position (x, z) relative to any one of the four independent screw axes of the cell is represented in the Harker section $y = \frac{1}{2}$ by a peak at (2x, 2z) relative to the origin. Therefore, a set of four Harker sections, reduced to half scale and put with their origins on the four screw axes, will represent four superimposed projections of the structure (Fig. 1). The projection of the

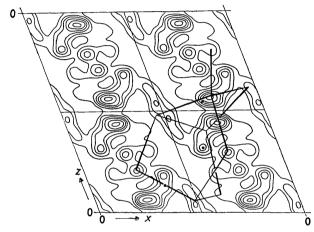


Fig. 1. A set of four Harker sections, reduced to half scale and put with their origins on the four independent screw axes of the unit cell. One of the two molecules is shown. Contour lines are on an arbitrary scale. Squares indicate non-Harker maxima.

trigonal pyramid could now be put on peaks in Fig.1, giving the x and z coordinates of four atoms. The positions of the other atoms were deduced from the other peaks in the Harker section, combined with the information obtained from peaks in the section y=0 and from peaks around the origin.

The molecules appeared to have an unexpected asymmetric structure, shown in Fig. 3. Phosphorus and sulphur are distinguished by chemical arguments only.

Refinement of the parameters

The coordinates were refined by successive Fourier syntheses of the three projections, applying 'backshift' corrections (Booth, 1946) in the later stages of the refinement. Using a temperature factor $\exp(-B\sin^2\theta/\lambda^2)$ the values of the disagreement index R for the three projections are:

	B (Å 2)	R (%)
[001]	$2 \cdot 37$	8.0
[010]	2.69	11.7
[100]	2.88	7.5

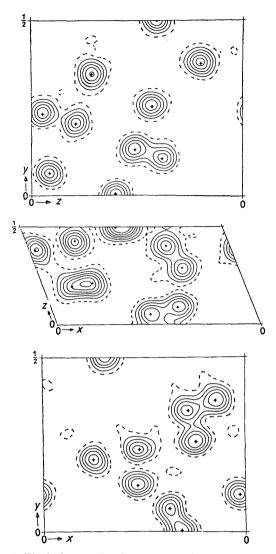


Fig. 2. Final electron-density maps of the three projections. Contour lines are at intervals of 4 e.Å $^{-2}$; the broken line is at 4 e.Å $^{-2}$. Crosses indicate final atomic coordinates.

Table 4 shows the agreement between observed and calculated F values. With these structure amplitudes and phases the final Fourier syntheses were computed (Fig. 2). As final coordinates (Table 1) the average values of each coordinate obtained from two projections were taken. The structure factors were not recalculated with these final coordinates.

Table 1. Final atomic coordinates

Atom	$oldsymbol{x}$	y	z
\mathbf{P}_{1}	0.684_{5}	0.004	0.401
$\mathbf{P_2}$	0.470	0.132	0.495
P_3	0.758	0.259	0.575
$\mathbf{P}_{\mathbf{A}}^{o}$	0.480	0.237_{5}	0.052
S_1	0.627	0.065	0.088
$egin{smallmatrix} \mathbf{S_1} \\ \mathbf{S_2} \end{matrix}$	0.251	0.209	0.212
S_3 S_4	0.722_{5}	0.349	0.288
S_{4}	$0.970\degree$	0.106	0.622_{5}
S_5	0.856	0.378	0.805

Discussion

Accuracy

The accuracy of the final coordinates was estimated by comparing the final values of the coordinates obtained from different projections. The standard deviation of the coordinates thus obtained was 0.016 Å in each direction. Since the refinements of the coordinates in the three projections were not entirely independent, this value must be considered to be a lower limit for the standard deviation. As the standard deviation calculated from Cruickshank's formula (1949, 1954) was about 0.02 Å, the standard deviation in the final coordinates was assumed to be $0.02/\sqrt{2}$ Å, giving a standard deviation of 0.02 Å in the atomic distances. Since the effect of the inaccuracies in the lattice constants on the standard deviation in the atomic distances is about 0.01 Å, the bond lengths are subject to a total standard deviation of $[(0.02)^2 + (0.01)^2]^{\frac{1}{2}} = 0.025$ Å. The corresponding standard deviation in the bond angles is about 1° (Cruickshank & Robertson, 1953).

Description and discussion of the structure

The crystal structure consists of molecules of P_4S_5 , shown in Fig. 3. Their structure is asymmetric; P_4S_5

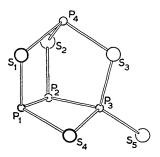
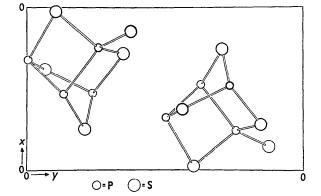



Fig. 3. Molecule of P₄S₅.

is therefore expected to be optically active. The bond lengths and angles are listed in Table 2. With the exception of the value $2\cdot19$ Å for S_4-P_1 , the differences in the P–S bond lengths and that of the two P–P

Table 2. Bond lengths and angles in the P₄S₅ molecule

P_1-P_2	$2 \cdot 20 \text{ A}$	$S_1 - P_4 - S_2$	100_{\circ}	$S_3 - P_3 - S_4$	111,
$P_2 - P_3$	2.21	$S_1 - P_4 - S_3$	105	$S_3 - P_3 - S_5$	108
S_1-P_1	2.09_{5}	$S_2 - P_4 - S_3$	99	$S_5 - P_3 - S_4$	114
$S_1 - P_4$	2.09	$P_1 - S_1 - P_4$	108	$S_5-P_3-P_2$	128
$S_2 - P_2$	2.08	$P_2 - S_2 - P_4$	99	$P_1-P_2-P_3$	85
$S_2 - P_4$	$2 \cdot 13_{5}$	$P_3 - S_3 - P_4$	102	$P_2-P_3-S_4$	88
$S_3 - P_3$	2.09°	$S_1-P_1-P_2$	101	$P_3-S_4-P_1$	88
$S_3 - P_4$	$2 \cdot 14$	$S_1 - P_1 - S_4$	108	$S_4-P_1-P_2$	86.5
S_4-P_1	$2 \cdot 19$	$S_2-P_2-P_1$	106		
S_4-P_3	$2 \cdot 11$	$S_2-P_2-P_3$	101		
$S_5 - P_3$	1.94	$S_3 - P_3 - P_2$	106		

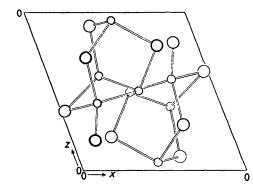


Fig. 4. P₄S₅ structure. (a) Projection along [001] on the (001) plane; (b) projection along [010] on the (010) plane.

bond lengths are not significant. Many bond angles, however, show significant differences. The distances

Table 3. Atomic distances in some phosphorus compounds

(The inaccuracies listed are estimated standard deviation	ns.)
---	------

	P-P (Å)	P–S (Å)	P=S(A)	Method*	$Ref.\dagger$
$\begin{array}{c} P_4S_3 \\ P_4S_5 \end{array}$	$2 \cdot 235 \pm 0 \cdot 005$	$2 \cdot 090 \pm 0 \cdot 005$		\boldsymbol{X}	1
$P_4^2S_5$	2.21 ± 0.025	$2.08 - 2.19 \pm 0.025$	1.94 ± 0.02	\boldsymbol{X}	
P_4S_2	2.35 ± 0.01	2.08 ± 0.01	1.95 ± 0.02	\boldsymbol{X}	2,3
P_4S_{10}		$2.08_{5} \pm 0.01$	$1.95_5 \pm 0.015$	\boldsymbol{X}	2
$\mathbf{P_2^II_4}$	2.21 ± 0.06		_	\boldsymbol{X}	4
P_4^{\dagger}	2.21 ± 0.02	_	-	$oldsymbol{E}$	5

^{*} X: X-ray diffraction; E: electron diffraction.

^{† 1:} Leung et al., 1957.

^{2:} Vos & Wiebenga, 1955.

^{3:} Vos & Wiebenga, 1956.

^{4:} Leung & Waser, 1956.

^{5:} Maxwell et al., 1935.

[‡] Tetrahedral.

			s. v.	AN HOUT	EN AN	1D E.	H. WIEB	ENGA		15
		Table	4. Observed	and calcula	ted struc	cture an	aplitudes a	nd calculated phases		
hkl	F_o	F_c	α (°)	hkl	$\boldsymbol{F_o}$	$oldsymbol{F_c}$	α (°)	hkl F_o	F_c	α (°)
020	48	48	134	650	23	21	49	0,10,0 6		142
040	24	22	113	660	< 6	5	316	0,10,1 11		228
060	32	34	124	001	33	33	180	0,10,2		136
080	51	51	328	002	10	9	0	0,10,3 < 5		238
0,10,0	6	7	140	003	10	11	180	0,10,4 10		141
0,12,0	< 6	1	75	004	< 6	2	180	0,10,5 15		356
100	36	40	180	005	14	13	0	0,11,1 11		334
110	41	40	356	006	15	15	180	0,11,2	11	307
120	28	28	293	007	10	11	180	0,11,3 < 5	6	243
130	82	85	294	003	5	5	180	0,11,4 15	13	12
140	32	31	180	011	34	32	131	0,12,0 5		149
150	< 6	4	98	012	50	50	140	0,12,1 16		262
160	6	5	227	013	28	28	53	0,12,2 11		322
170	13	14	180	014	40	37	210	0,12,3 13		32
180	8	4	240	015	19	20	151	0,12,4 7		199
190	23	24	21	016	9	5	70	0,13,1 5		0
1,10,0	23	24	329	017	< 5	5	197	0,13,2		243
1,11,0	27	26	231	020	48	$\begin{array}{c} 46 \\ 23 \end{array}$	$\begin{array}{c} 134 \\ 243 \end{array}$	0,13,3		81
1,12,0	19 8	17	111 341	$\begin{array}{c} 021 \\ 022 \end{array}$	23	50	243 84	0,14,0 5		333
$\substack{1,13,0\\200}$	25	$\begin{array}{c} 6 \\ 21 \end{array}$	180	023	58 8	8	316	$\begin{array}{ccc} 001 & 33 \\ 002 & 10 \end{array}$		180
210	$\frac{23}{37}$	36	65	023	27	29	204			0
$\begin{array}{c} 210 \\ 220 \end{array}$	51	53	75	024	8	29 7	$\frac{204}{228}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		180
$\begin{array}{c} 220 \\ 230 \end{array}$	20	23	98	026	< 5	2	264	004 0		180 0
$\begin{array}{c} 230 \\ 240 \end{array}$	31	33	180	027	15	15	273	006 15		180
250	20	19	184	031	27	25	25	007 10		180
$\begin{array}{c} 260 \\ 260 \end{array}$	40	$\frac{13}{42}$	237	032	43	40	288	008 5		180
270	21	26	184	033	26	27	135	100 36		180
280	7	8	15	034	19	21	100	101 32		180
290	11	10	16	035	6	9	215	102 62		180
2,10,0	13	14	91	036	29	30	343	103 16		0
2,11,0	13	15	10	037	13	12	297	104 23		ŏ
2,12,0	12	12	246	040	24	21	113	105 23		Ŏ
300	5	6	0	041	13	16	344	106 13		180
310	17	16	241	042	28	29	18	$\overline{1}01$ 6		180
320	39	40	18	043	21	19	54	$\overline{1}02$ 41	36	180
330	29	29	36	044	22	22	236	$\overline{1}03$ 8		180
340	26	30	77	045	23	22	321	104 68		180
350	9	9	304	046	21	23	199	$\overline{\underline{1}}05$ 32		0
360	13	11	349	047	9	9	33	$\overline{\underline{1}}06$ 23		0
370	25	22	73	051	22	25	109	107 20		0
380	16	19	215	052	54	55	218	200 25		180
390	25	26	170	053	24	22	126	201 34		180
3,10,0	12	11	344	054	13	11	218	202 43		0
3,11,0	13	16	6	055	< 6	2	41	$\frac{203}{204} < 5$		180
$\substack{3,12,0\\400}$	$\begin{array}{c} 13 \\ 38 \end{array}$	$\frac{16}{37}$	$\begin{array}{c} 45 \\ 0 \end{array}$	056 057	$\frac{22}{6}$	$\begin{array}{c} 23 \\ 7 \end{array}$	$\begin{array}{c} 146 \\ 279 \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$. 0 180
410	31	$\frac{37}{32}$	311		$\frac{6}{32}$	35	127	_		0
420	45	48	157	060 061	48	48	114	$egin{array}{cccccccccccccccccccccccccccccccccccc$		0
430	12	10	321	062	$\frac{40}{42}$	40	240	$\frac{201}{202}$ 57		0
440	19	19	313	063	6	6	283	$\frac{202}{\overline{2}03}$ 29		0
450	8	6	162	064	9	11	32	$\frac{200}{\overline{2}04}$ 9		180
460	14	14	249	065	9	7	115	$\overline{\overline{205}}$ 20		180
470	8	7	233	066	9	9	312	$\overline{\overline{2}06}$ 25		0
480	23	$\dot{22}$	318	067	7	7	341	$\overline{2}07$ $\overline{2}6$		180
490	20	$\frac{21}{21}$	290	071	35	34	215	$\overline{2}08$ 5		0
4,10,0	17	19	98	072	24	25	316	300 5		Ŏ
500	12	19	180	073	< 5	6	135	301 16		180
510	14	16	142	074	29	25	313	302 4		0
520	9	14	63	075	14	11	301	303 25		0
530	13	7	212	076	< 4	5	136	304 35		180
540	9	7	117	080	51	52	331	305 7		0
550	27	23	91	081	31	32	193	306 7	9	180
560	16	17	196	082	20	20	52	$\bar{3}01$ 18	15	180

< 6

17

22

11

091

20

17

8

 $\overline{3}02$

 $\frac{3}{3}03$ $\frac{3}{3}04$

 $\overline{3}05$

 $\frac{3}{3}06$ $\frac{3}{3}07$ $\frac{3}{3}08$

14

16

Table ·	4 ((cont.)
---------	-----	--------	---

hkl	F_o	F_c	α (°)	hkl	F_o	$\boldsymbol{F_c}$	α (°)	hk	F_o	F_c	α (°)
400	38	38	0	500	12	15	180	605	2 25	27	0
401	12	11	180	501	12	5	180	6 0∶	11	5	0
402	9	4	0	502	7	5	0	605	2 12	19	180
403	< 7	10	0	503	20	20	180	603	< 6	1	180
404	< 7	7	0	$\overline{5}01$	18	19	0	6 04	10	12	180
405	7	9	0	$\overline{5}02$	8	10	180	608	5 6	6	180
$\overline{4}01$	39	51	180	$\bar{5}03$	27	34	0	600	6 < 6	1	0
$\overline{4}02$	7	7	0	$\overline{5}04$	16	19	180	<u>6</u> 0′	7 16	16	180
$\overline{4}03$	< 6	9	180	$\overline{5}05$	14	14	0	700	0 < 6	1	180
$\overline{4}04$	16	18	0	$\overline{5}06$	6	9	0	70	l 6	5	180
$\overline{4}05$	< 6	7	180	507	8	12	180	709	2 6	9	180
$\bar{4}06$	< 6	2	180	600	< 6	6	0	70	3 < 6	4	0
$\overline{4}07$	< 6	1	180	601	< 6	1	180	70	18	21	0

between the non-bonded atoms P_2 and S_4 , and between P_1 and P_3 , are very short (about 3.00 Å).

The arrangement of the molecules in the crystal is shown in Fig. 4. The shortest distance between atoms of different molecules is 3.68 Å.

The bond lengths found may be compared with those in the other phosphorsulfides and some other phosphorus compounds (Table 3). The P-P, P-S and P=S distances in these compounds are mutually very similar, with the exception of the remarkably long P-P distance in P_4S_7 .

We wish to thank Mr G. A. Wiegers for his help during the early stages of the structure determination. The assistance of Miss A. M. Zweens and Mr H. Schürer during the calculations is also gratefully acknowledged. The Patterson and Fourier syntheses were computed on IBM machines, which were generously put at our disposal by Theodorus Niemeyer N.V.; our thanks are due to Mr M. R. van de Velde and Miss G. E. Veldman for operating these machines. The work was supported by the Netherlands Organization for Pure Research (Z. W. O.).

References

BOOTH, A. D. (1946). Proc. Roy. Soc. A, 188, 74. BOULOUCH, R. (1904). C. R. Acad. Sci., Paris, 138, 363. CRUICKSHANK, D. W. J. (1949). Acta Cryst. 2, 65. CRUICKSHANK, D. W. J. (1954). Acta Cryst. 7, 519.

CRUICKSHANK, D. W. J. & ROBERTSON, A. P. (1953).

Acta Cryst. 6, 698.

HOUTEN, S. VAN, VOS, A. & WIEGERS, G. A. (1955). Rec. Trav. chim. Pays-Bas, 74, 1167.

LEUNG, Y. C. & WASER, J. (1956). J. Phys. Chem. 60, 539.

LEUNG, Y. C., WASER, J., HOUTEN, S. VAN, VOS, A., WIEGERS, G. A. & WIEBENGA, E. H. (1957). To be published.

LEUNG, Y. C., WASER, J. & ROBERTS, L. R. (1955).
Chem. Ind. p. 948.

MAXWELL, L. R., HENDRICKS, S. B. & MOSLEY, V. M. (1935). J. Chem. Phys. 3, 699.

Pernert, J. C. & Brown, J. H. (1949). Chem. Engng. News (N. Y.) 27, 2143.

STOCK, A. (1910). Ber. dtsch. chem. Ges. 43, 150, 414, 1223. TREADWELL, W. D. & BEELI, CH. (1935). Helv. chim. Acta, 18, 1161.

Vos, A. & Wiebenga, E. H. (1955). Acta Cryst. 8, 217. Vos, A. & Wiebenga, E. H. (1956). Acta Cryst. 9, 92. Wiebenga, E. H. & Smits, D. W. (1950). Acta Cryst. 3, 265.